Lower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming

In this article, we propose a geometric programming method in order to compute lower bounds for real polynomials. We provide new sufficient conditions for polynomials to be nonnegative as well as to have a sum of binomial squares representation. These criteria rely on the coefficients and the support of a polynomial and generalize all previous ones by Lasserre, Ghasemi, Marshall, Fidalgo and Ko...

متن کامل

Lower Bounds for Polynomials Using Geometric Programming

We make use of a result of Hurwitz and Reznick [8] [19], and a consequence of this result due to Fidalgo and Kovacec [5], to determine a new sufficient condition for a polynomial f ∈ R[X1, . . . , Xn] of even degree to be a sum of squares. This result generalizes a result of Lasserre in [10] and a result of Fidalgo and Kovacec in [5], and it also generalizes the improvements of these results gi...

متن کامل

Linear Programming, the Simplex Algorithm and Simple Polytopes

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

متن کامل

Coercive Polynomials and Their Newton Polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on Rn of multivariate polynomials f ∈ R[x] in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on the vertex set of their Newton poly...

متن کامل

Absolute Irreducibility of Polynomials via Newton Polytopes

A multivariable polynomial is associated with a polytope, called its Newton polytope. A polynomial is absolutely irreducible if its Newton polytope is indecomposable in the sense of Minkowski sum of polytopes. Two general constructions of indecomposable polytopes are given, and they give many simple irreducibility criteria including the well-known Eisenstein’s criterion. Polynomials from these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2016

ISSN: 1052-6234,1095-7189

DOI: 10.1137/140962425