Lower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming
نویسندگان
چکیده
منابع مشابه
Lower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming
In this article, we propose a geometric programming method in order to compute lower bounds for real polynomials. We provide new sufficient conditions for polynomials to be nonnegative as well as to have a sum of binomial squares representation. These criteria rely on the coefficients and the support of a polynomial and generalize all previous ones by Lasserre, Ghasemi, Marshall, Fidalgo and Ko...
متن کاملLower Bounds for Polynomials Using Geometric Programming
We make use of a result of Hurwitz and Reznick [8] [19], and a consequence of this result due to Fidalgo and Kovacec [5], to determine a new sufficient condition for a polynomial f ∈ R[X1, . . . , Xn] of even degree to be a sum of squares. This result generalizes a result of Lasserre in [10] and a result of Fidalgo and Kovacec in [5], and it also generalizes the improvements of these results gi...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملCoercive Polynomials and Their Newton Polytopes
Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on Rn of multivariate polynomials f ∈ R[x] in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on the vertex set of their Newton poly...
متن کاملAbsolute Irreducibility of Polynomials via Newton Polytopes
A multivariable polynomial is associated with a polytope, called its Newton polytope. A polynomial is absolutely irreducible if its Newton polytope is indecomposable in the sense of Minkowski sum of polytopes. Two general constructions of indecomposable polytopes are given, and they give many simple irreducibility criteria including the well-known Eisenstein’s criterion. Polynomials from these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2016
ISSN: 1052-6234,1095-7189
DOI: 10.1137/140962425